Schedule
Readings are subject to change. Check the online syllabus before reading. Please refer to the learning management system (LMS) for all assignment deadlines and expected deliverables.
Week 1
- Tue., Jan. 16 Introductions
- Reading:
- VAD 1: What is Vis?
- Reading:
- Fri., Jan. 19 Orienting yourself to Web Visualizations
- Reading:
- Murray 1-2
- Introduction to Observable
- Optional: A Minimal Introduction to JavaScript and Observable. You may want to spend some time here if you are completely new to Javascript or need a refresher on programming in general. If so, review this before the Introduction to Observable above.
- Optional: Variable assignment in JavaScript: let, const, var for beginners
- Reading:
Week 2
- Tue., Jan. 23 Tech Fundamentals
- Reading
- Murray 3-4: Tech Fundamentals & Setup
- Start Introduction to Vega-Lite
- Reading
- Fri., Jan. 26 Data
- VAD 2: What: Data Abstraction
- Murray 5: Data
- Data Types - read up to, but not through, the section named “Encoding Channels”
Week 3
- Tue., Jan. 30 Tasks
- VAD 3: Why: Task Abstraction
- Continue Data Types, Graphical Marks, and Visual Encoding Channels beginning at “Encoding Channels”
- Fri., Feb. 2 Marks and Channels
- Reading
- VAD 5: Marks and Channels
- Data Types, Graphical Marks, and Visual Encoding Channels - finish.
- Reading
Week 4
- Tue., Feb. 6 Exploratory Data Analysis
- Reading
- Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases. Chris Stolte, Diane Tang, and Pat Hanrahan. IEEE TVCG. 2002.
- Data Transformation
- Reading
- Fri., Feb. 9 Exploratory Data Analysis II
Week 5
- Tue., Feb. 13 Tables I
- Reading
- VAD 7: Arrange Table Data
- Reading
- Fri., Feb. 16 Tables II
- Reading
- VAD 12: Facet
- Multi-view Composition
- Reading
Week 6
- Tue., Feb. 20 Spatial Data I
- Reading
- VAD 8: Spatial Data
- Cartographic Visualization
- Reading
- Fri., Feb. 23 Spatial Data II
- Reading
Week 7
- Tue., Feb. 27 Networks I
- Reading
- VAD 9: Network Data
- Reading
- Fri., Mar. 1 Networks II
Week 8
- Tue., Mar. 5 Introduction to D3 I
- Fri., Mar. 8 Introduction to D3 II
- Reading
Week 9
- Tue., Mar. 12 Spring break; no classes, university offices open Monday through Friday
- Fri., Mar. 15 Spring break; no classes, university offices open Monday through Friday
Week 10
- Tue., Mar. 19 Color and Perception I
- Reading
- VAD 6: Rules of Thumb
- Reading
- Fri., Mar. 22 Color and Perception II
- Reading
- VAD 10: Color and Other Channels
- Reading
Week 11
- Tue., Mar. 26 Manipulate
- Reading
- VAD 11: Manipulate View
- Reading
- Fri., Mar. 29 Presenting Visual Statistics
- Reading
- Tufte VST
- Reading
Week 12
- Tue., Apr. 2 3D Visualization I
- Fri., Apr. 5 3D Visualization II
Week 13
- Tue., Apr. 9 Reduce
- Reading
- VAD 13: Reduce Items and Attributes
- Reading
- Fri., Apr. 12 Embedding, Focus + Context
- Reading
- VAD 14: Embed Focus + Context
- Reading
Week 14
- Tue., Apr. 16 Evaluating Visualizations
- Reading
- VAD 4: Evaluation
- Reading
- Fri., Apr. 19 Project Videos
Week 15
- Tue., Apr. 23 Text
- Fri., Apr. 26 Visual Analytics, Machine Learning
- La Rosa, B., Blasilli, G., Bourqui, R., Auber, D., Santucci, G., Capobianco, R., … & Angelini, M. (2023, February). State of the art of visual analytics for explainable deep learning. In Computer graphics forum (Vol. 42, No. 1, pp. 319-355).
- Sperrle, F., El‐Assady, M., Guo, G., Borgo, R., Chau, D. H., Endert, A., & Keim, D. (2021, June). A survey of human‐centered evaluations in human‐centered machine learning. In Computer Graphics Forum (Vol. 40, No. 3, pp. 543-568).
Finals
- Fri., May 3 9:10AM-10:40AM: Final Project Presentations (DMTI 213)